Chứng cứ quan sát Hằng_số_vũ_trụ

Hiện nay chứng cứ về vũ trụ giãn nở gia tốc là rất mạnh, với nhiều thí nghiệm khác nhau trên quy mô về thời gian vũ trụ, khoảng cách vũ trụ và những quá trình vật lý, tất cả đều ủng hộ mô hình vũ trụ học ΛCDM, trong đó vũ trụ là phẳng và thành phần mật độ năng lượng là 4,9% vật chất baryon, 26,8% vật chất tối, và năng lượng tối chiếm 68,9%. Chi tiết và tham khảo tại bài viết tổng quan [12]

Kết quả quan sát quan trọng đưa hằng số vũ trụ học trở thành một chủ đề nóng trong vật lý hiện đại đó là sự phát hiện ra các siêu tân tinh loại Ia ở xa (0<z<1), mà các nhà thiên văn coi như những ngọn nến chuẩn, có độ sáng mờ hơn so với dự định nếu vũ trụ đang giãn nở giảm tốc.[13][14] Kể từ đó nhiều nhóm nhà thiên văn đã xác nhận kết quả này với thêm nhiều siêu tân tinh ở những độ dịch chuyển đỏ lớn hơn. Sự quan trọng bậc nhất đó là khi quan sát các siêu tân tinh ở dịch chuyển đỏ lớn (z>1) chúng lại có độ sáng lớn hơn so với dự định, mà đây là dấu hiệu thực nghiệm mà được chờ đợi có từ giai đoạn giảm giãn nở trước giai đoạn giãn nở gia tốc hiện nay. Những siêu tân tinh có độ dịch chuyển đỏ lớn hơn so với dự định cho phép chúng ta loại bỏ được những hiệu ứng làm mờ độ sáng của siêu tân ngoài sự giãn nở gia tốc của không thời gian trong vũ trụ.

Trước khi có kết quả công bố năm 1998 từ việc quan sát siêu tân tinh, đã có một số chứng cứ ủng hộ cho sự chấp nhận khá nhanh về vũ trụ giãn nở gia tốc từ kết quả quan sát siêu tân tinh ở xa. Có ba sự kiện trong số chúng bao gồm:

Tuổisố phận sau cùng của vũ trụ có thể xác định bằng cách đo hằng số Hubble theo thời điểm ngày nay và ngoại suy giá trị thu được của tham số giảm tốc, được đặc trưng duy nhất bởi tham số mật độ (ΩM cho vật chất tối và baryon và ΩΛ cho năng lượng tối). "Vũ trụ đóng" có ΩM > 1 và ΩΛ = 0 kết thúc bằng Vụ Co Lớn và có tuổi trẻ hơn đáng kể so với tuổi từ tham số Hubble. "Vũ trụ mở" với ΩM ≤ 1 và ΩΛ = 0 sẽ giãn nở mãi mãi và có tuổi gần bằng với tuổi theo tham số Hubble. Đối với vũ trụ gia tốc với ΩΛ khác 0 mà chúng ta đang ở trong nó (trong hình tương ứng với giá trị quan sát được ΩM = 0,3 và ΩΛ = 0,7), tuổi của vũ trụ rất sát với tuổi theo hằng số Hubble.
  • Tuổi của Vũ trụ dường như ít hơn so với những sao già nhất từng phát hiện. Chúng ta đã khá rõ quá trình tiến hóa sao, và khi theo dõi các sao trong những cụm sao cầu và thiên hà gần cho thấy một số có tuổi trên 13 tỷ năm.[15] Chúng ta có thể so sánh giá trị này với tuổi của vũ trụ bằng cách đo tốc độ giãn nở của vũ trụ ngày nay và lần theo trở lại tới thời điểm của Vụ Nổ Lớn. Nếu vũ trụ giãn nở giảm tốc tới tốc độ hiện tại thì tuổi của nó phải thấp hơn so với vũ trụ đang giãn nở gia tốc với tốc độ hiện tại (hình bên cạnh, tương ứng với các mô hình vũ trụ chỉ có vật chất tối và baryon, hay ΩM > 0). Vũ trụ phẳng chỉ chứa vật chất có tuổi chỉ khoảng 9 tỷ năm - trẻ hơn vài tỷ năm so với những ngôi sao già nhất. Mặt khác, vũ trụ phẳng với thành phần chứa khoảng 70% năng lượng tối có tuổi ước tính bằng 13,8 tỷ năm.[16] Do đó các quan sát về vũ trụ giãn nở gia tốc đã giải được nghịch lý tuổi của các ngôi sao già nhất.[17]
  • Có quá nhiều thiên hà nằm ở xa. Phương pháp đếm số lượng các thiên hà đã được các nhà thiên văn sử dụng rộng rãi để ước lượng sự giãn nở giảm tốc của vũ trụ.[18] Thể tích không gian giữa hai khoảng cách có giá trị dịch chuyển đỏ khác nhau phụ thuộc vào lịch sử giãn nở của vũ trụ (đối với một góc khối cho trước).[19] Khi sử dụng thể tích không gian giữa hai giá trị dịch chuyển đỏ như là hàm số của số lượng thiên hà chứa trong thể tích, các nhà thiên văn nhận thấy thể tích ở xa đo được (bằng cách đếm số thiên hà) dường như quá lớn so với thể tích tiên đoán từ mô hình vũ trụ giãn nở giảm tốc. Như vậy hoặc là độ sáng của các thiên hà hay số lượng các thiên hà trong một đơn vị thể tích đã tiến hóa theo thời gian theo cách bất ngờ nào đó, hoặc là việc tính toán thể tích dựa trên những giả thiết chưa đúng. Mô hình vũ trụ giãn nở gia tốc đã lý giải được kết quả quan sát này mà không cần tới mô hình tiến hóa thiên hà kỳ lạ nào.[19]
  • Hình học của vũ trụ là phẳng mặc dù không đủ vật chất theo như tính toán. Khi đo thăng giáng nhiệt (giữa hai điểm nóng và điểm lạnh) trong bức xạ nền vi sóng vũ trụ (CMB) phát ra khi vũ trụ ~380.000 năm tuổi, tam giác tạo thành bởi điểm quan sát từ Trái Đất và hai điểm nóng và điểm lạnh có tổng các góc xấp xỉ 180°, và có thể kết luận rằng hình học của vũ trụ là phẳng.[20][21] Bằng cách kết hợp những dữ liệu này với đo lường chính xác về H0 (dựa trên dịch chuyển đỏ của các thiên hà chằng hạn) và hoặc đo lường về mật độ vật chất trong vũ trụ (chẳng hạn xác định khối lượng và độ sáng của các đám thiên hà, dựa trên thấu kính hấp dẫn hoặc phổ công suất của CMB),[22] các nhà thiên văn nhận thấy rõ ràng rằng mật độ vật chất trong vũ trụ chỉ đóng góp vào khoảng 30% tổng thành phần trong nó.[23] Một cách để tính tới mật độ năng lượng bị thiếu đó là đưa vào một hằng số vũ trụ học. Và như kết quả quan sát được, giá trị hằng số vũ trụ học đo được cần để giải thích sự giãn nở gia tốc quan sát thấy từ dữ liệu siêu tân tinh, là đủ và phù hợp để làm cho hình học của vũ trụ là phẳng. Do vậy hằng số vũ trụ học lý giải được sự mâu thuẫn giữa mật độ vật chất với các thí nghiệm quan sát từ CMB.[24]

Tài liệu tham khảo

WikiPedia: Hằng_số_vũ_trụ http://www.britannica.com/EBchecked/topic/139294 http://books.google.com/books?id=36K1PfetZegC&lpg=... http://www.nature.com/news/european-probe-shoots-d... http://www.newscientist.com/article/dn9114-cyclic-... http://physicsworld.com/cws/article/multimedia/201... http://preposterousuniverse.com/writings/encyc/ http://einstein-annalen.mpiwg-berlin.mpg.de/relate... http://adsabs.harvard.edu/abs/1917KNAB...19.1217D http://adsabs.harvard.edu/abs/1917SPAW.......142E http://adsabs.harvard.edu/abs/1922ZPhy...10..377F